import numpy as np
import scipy
import scipy.sparse
import networkx as nx
from .quantum_walk import QuantumWalk
from ..graph import SDMultigraph
from scipy.linalg import hadamard, dft
from . import _pyneblina_interface as nbl
[docs]
class Coined(QuantumWalk):
r"""
Manage instances of coined quantum walks on arbitrary graphs.
The class provides methods to handle and generate operators in the
coined quantum walk model. It also facilitates the simulation of
coined quantum walks on graphs.
For additional details about coined quantum walks,
refer to the Notes Section.
Parameters
----------
graph
Graph on which the quantum walk takes place.
Two types of entries are accepted:
* Simple graph (:class:`hiperwalk.Graph`);
* Multigraph (:class:`hiperwalk.Multigraph`);
A symmetric directed multigraph is created based on the input.
**kwargs : optional
Optional arguments for setting the non-default evolution operator.
See :meth:`set_evolution`.
Raises
------
TypeError
if ``adj_matrix`` is not an instance of
:class:`scipy.sparse.csr_array`.
See Also
--------
set_evolution
set_shift
set_coin
Notes
-----
The coined quantum walk model is a quantum analog of
classical random walks, incorporating an additional
quantum coin-toss mechanism. It uses an extra quantum
internal degree of freedom, represented by the coin state,
to determine the direction of the walker's movement
on a graph.
In the coined model, the graph is interpreted
as a directed graph as follows:
Each edge in :math:`G(V, E)` connecting two distinct vertices
translates into a pair of arcs in the directed graph
:math:`\vec{G}(V, \mathcal{A})`, where
.. math::
\begin{align*}
\mathcal{A} = \bigcup_{v_k v_\ell\, \in E} \{(v_k, v_\ell), (v_\ell, v_k)\}.
\end{align*}
.. note::
The order of arcs depends on the order of neighbors.
Arcs are represented using either
the (tail,head) notation or numerical labels.
In the :obj:`Graph` class, the arc labels are ordered such that for two arcs,
:math:`(v_i, v_j)` and :math:`(v_k, v_\ell)`, with labels :math:`a_1` and
:math:`a_2` respectively, :math:`a_1 < a_2` if and only if :math:`i < k` or
(:math:`i = k` and :math:`j < \ell`).
Loops are depicted as single arcs,
affecting the dimension of the associated Hilbert space.
In coined quantum walks, the weights of arcs do not influence the dynamics.
The computational basis is composed of the graph's arc set.
For simple graphs, the cardinality of the computational
basis is :math:`2|E|`, where :math:`E`
represents the graph's edge set.
When a loop is added to the graph, the cardinality of the
computational basis increases by one for each loop.
The arcs are arranged within the computational basis
to ensure that the coin operator adopts a block-diagonal
matrix form.
For additional information on the arc ordering,
please consult the respective graph descriptions.
For a more detailed understanding of coined quantum walks,
refer to Section 7.2: Coined Walks on Arbitrary Graphs,
found in the book 'Quantum Walks and Search Algorithms' [1]_.
For example, the graph :math:`G(V, E)` shown in
Figure 1 has an adjacency matrix ``adj_matrix``.
.. testsetup::
import numpy as np
>>> adj_matrix = np.array([
... [0, 1, 0, 0],
... [1, 0, 1, 1],
... [0, 1, 0, 1],
... [0, 1, 1, 0]])
>>> adj_matrix
array([[0, 1, 0, 0],
[1, 0, 1, 1],
[0, 1, 0, 1],
[0, 1, 1, 0]])
.. graphviz:: ../../graphviz/graph-example.dot
:align: center
:layout: neato
:caption: Figure 1
Suppose that, for this graph,
the neighbors are given in ascending order.
Then,
the arcs of the associated digraph in the arc notation are
>>> arcs = [(i, j) for i in range(4)
... for j in range(4) if adj_matrix[i,j] == 1]
>>> arcs
[(0, 1), (1, 0), (1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)]
Note that ``arcs`` is already sorted, hence the associated
numeric labels are
>>> arcs_labels = {arcs[i]: i for i in range(len(arcs))}
>>> arcs_labels
{(0, 1): 0, (1, 0): 1, (1, 2): 2, (1, 3): 3, (2, 1): 4, (2, 3): 5, (3, 1): 6, (3, 2): 7}
The numeric labels are depicted in Figure 2.
.. graphviz:: ../../graphviz/graph-arcs.dot
:align: center
:layout: neato
:caption: Figure 2
If we insert the labels of the arcs into the adjacency matrix,
we obtain matrix ``adj_labels`` as follows:
>>> adj_labels = [[arcs_labels[(i,j)] if (i,j) in arcs_labels
... else '' for j in range(4)]
... for i in range(4)]
>>> adj_labels = np.matrix(adj_labels)
>>> adj_labels
matrix([['', '0', '', ''],
['1', '', '2', '3'],
['', '4', '', '5'],
['', '6', '7', '']], dtype='<U21')
Note that, intuitively,
the arcs are labeled in left-to-right and top-to-bottom fashion.
References
----------
.. [1] R. Portugal. "Quantum walks and search algorithms", 2nd edition,
Springer, 2018.
"""
# static attributes.
# The class must be instantiated once, otherwise are dicts are empty.
# The class must be instantiated so the interpreter knows
# the memory location for the function pointers.
_coin_funcs = dict()
_valid_kwargs = dict()
[docs]
def __init__(self, graph=None, **kwargs):
# create symmetric directed multigraph from input
sdmg = SDMultigraph(graph)
super().__init__(graph=sdmg)
self.hilb_dim = self._graph.number_of_arcs()
# Specific coined quantum walk attributes
self._shift = None
self._coin = None
self._oracle_coin = []
# create static dicts
if not bool(Coined._valid_kwargs):
Coined._valid_kwargs = {
'shift': Coined._get_valid_kwargs(self._set_shift),
'coin': Coined._get_valid_kwargs(self._set_coin),
'marked': Coined._get_valid_kwargs(self._set_marked),
'evolution': Coined._get_valid_kwargs(
self._set_evolution)
}
# dict with valid coins as keys and the respective
# function pointers.
if not bool(Coined._coin_funcs):
# assign static attribute
Coined._coin_funcs = {
'fourier': Coined._fourier_coin,
'grover': Coined._grover_coin,
'hadamard': Coined._hadamard_coin,
'identity': Coined._identity_coin,
'minus_fourier': Coined._minus_fourier_coin,
'minus_grover': Coined._minus_grover_coin,
'minus_hadamard': Coined._minus_hadamard_coin,
'minus_identity': Coined._minus_identity_coin
}
self.set_evolution(**kwargs)
def _set_flipflop_shift(self):
r"""
Creates the flipflop shift operator (:math:`S`) based on
the ``_graph`` attribute.
The operator is configured for future use. If an evolution
operator was set earlier, it will be unset to maintain coherence.
"""
g = self._graph
num_vert = g.number_of_vertices()
num_arcs = g.number_of_arcs()
if g.is_underlying_simple():
S_cols = [g.arc_number((j, i))
for i in range(num_vert)
for j in g.neighbors(i)]
else:
S_cols = [g.arc_number((j, i, e))
for i in range(num_vert)
for j in g.neighbors(i)
for e in range(g.number_of_edges(j, i))]
# Using csr_array((data, indices, indptr), shape)
# Note that there is only one entry per row and column
S = scipy.sparse.csr_array(
( np.ones(num_arcs, dtype=np.int8),
S_cols, np.arange(num_arcs+1) ),
shape=(num_arcs, num_arcs)
)
self._shift = S
[docs]
def has_persistent_shift(self):
r"""
Check whether the persistent shift operator is defined
for the current graph.
Returns
-------
bool
Notes
-----
The persistent shift is sometimes called *moving shift*.
The persistent shift operator can only be defined in a
meaningful way for certain specific graphs. For instance,
for graphs that can be embedded onto a plane so that
directions such as left, right, up, and down
can be referred to naturally.
"""
return self._graph.previous_arc(0) is not None
def _set_persistent_shift(self):
r"""
Creates the persistent shift operator (:math:`S`) based on
the ``_graph`` attribute.
The operator is set for future usage.
If an evolution operator was set previously,
it is unset for coherence.
"""
num_arcs = self._graph.number_of_arcs()
S_cols = [self._graph.previous_arc(i) for i in range(num_arcs)]
# Using csr_array((data, indices, indptr), shape)
# Note that there is only one entry per row and column
S = scipy.sparse.csr_array(
( np.ones(num_arcs, dtype=np.int8),
S_cols, np.arange(num_arcs+1) ),
shape=(num_arcs, num_arcs)
)
self._shift = S
def _set_shift(self, shift='default'):
valid_vals = ['default', 'flipflop', 'persistent', 'ff', 'p']
# check if string
try:
shift = shift.lower()
if shift not in valid_vals:
raise ValueError(
"Invalid `shift` value. Expected one of "
+ str(valid_vals) + ". But received '"
+ str(shift) + "' instead."
)
if shift == 'default':
shift = 'p' if self.has_persistent_shift() else 'ff'
if shift == 'ff':
shift = 'flipflop'
elif shift == 'p':
shift = 'persistent'
if str(self._shift) != shift:
if shift == 'flipflop':
self._set_flipflop_shift()
else:
self._set_persistent_shift()
return True
return False
except AttributeError:
pass
# check if explict matrix
try:
shift[0][0] #if this works, then shift is numpy or list of list
# convert to sparse
shift = scipy.sparse.csr_array(shift)
except NotImplementedError:
# already sparse
pass
if (len(shift.shape) != 2 or shift.shape[0] != shift.shape[1]):
raise TypeError('Explicit coin is not a square matrix.')
if (id(self._shift) != id(shift)):
self._shift = shift
return True
return False
[docs]
def set_shift(self, shift='default'):
r"""
Set the shift operator.
Defines either the flipflop or the persistent shift operator.
Following this, the evolution operator updates accordingly.
Parameters
----------
shift: {'default', 'flipflop', 'persistent', 'ff', 'p'}
Whether to create the flip flop or the persistent shift.
By default, creates the persistent shift if it is defined;
otherwise creates the flip flop shift.
Argument ``'ff'`` is an alias for ``'flipflop'``.
Argument ``'p'`` is an alias for ``'persistent'``.
Raises
------
AttributeError
If ``shift='persistent'`` and
the persistent shift operator cannot be defined.
See Also
--------
has_persistent_shift
set_evolution
Notes
-----
.. note::
Check :class:`Coined` Notes for details
about the computational basis.
The flip-flop shift operator :math:`S` is defined as
.. math::
S \ket{v, u} = \ket{u, v},
in the context of arc notation, where :math:`(v, u)` and
:math:`(u, v)` represent opposite arcs. This can be equivalently
expressed as :math:`S\ket{i} = \ket{j}`, where :math:`i` is the
label of the arc :math:`(v, u)` and :math:`j` is the label of
the arc :math:`(u, v)`. The flip-flop shift satisfies the
property :math:`S^2 = I`.
The persistent shift, also known as the *moving shift*,
is defined for graphs with a clear notion of direction or rotation.
When the shift operator is applied repeatedly, it causes the walker
to continue moving persistently in the same direction. Unlike the
flip-flop shift, the persistent shift does not satisfy :math:`S^2 = I`.
For a more comprehensive understanding of the
shift operator, refer to Section 7.2: Coined Walks on Arbitrary
Graphs in the book "Quantum Walks and Search Algorithms" [1]_.
References
----------
.. [1] R. Portugal. "Quantum walks and search algorithms",
2nd edition, Springer, 2018.
Examples
--------
Consider the Graph presented in the
:class:`Graph` Notes Section example.
The corresponding flip-flop shift operator is
.. testsetup::
import numpy as np
import scipy.sparse
from sys import path
path.append('../..')
.. doctest::
>>> import hiperwalk as hpw
>>> A = scipy.sparse.csr_array([[0, 1, 0, 0],
... [1, 0, 1, 1],
... [0, 1, 0, 1],
... [0, 1, 1, 0]])
>>> qw = hpw.Coined(hpw.Graph(A))
>>> qw.set_shift(shift='flipflop')
>>> S = qw.get_shift().todense()
>>> S
array([[0, 1, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0]], dtype=int8)
Note that as required, :math:`S^2 = I`,
:math:`S \ket 0 = \ket 1`, :math:`S \ket 1 = \ket 0`,
:math:`S \ket 2 = \ket 4`, :math:`S \ket 4 = \ket 2`, etc.
.. doctest::
>>> (S @ S == np.eye(8)).all() # True by definition
True
>>> S @ np.array([1, 0, 0, 0, 0, 0, 0, 0]) # S|0> = |1>
array([0, 1, 0, 0, 0, 0, 0, 0])
>>> S @ np.array([0, 1, 0, 0, 0, 0, 0, 0]) # S|1> = |0>
array([1, 0, 0, 0, 0, 0, 0, 0])
>>> S @ np.array([0, 0, 1, 0, 0, 0, 0, 0]) # S|2> = |4>
array([0, 0, 0, 0, 1, 0, 0, 0])
>>> S @ np.array([0, 0, 0, 0, 1, 0, 0, 0]) # S|4> = |2>
array([0, 0, 1, 0, 0, 0, 0, 0])
"""
self.set_evolution(shift=shift,
coin=self._coin,
marked=self._marked)
[docs]
def get_shift(self):
r"""
Retrieve the shift operator.
Shift operator used for constructing the evolution operator.
Returns
-------
:class:`scipy.sparse.csr_array`
See Also
--------
set_shift
"""
return self._shift
def _set_coin(self, coin='default'):
try:
if len(coin.shape) != 2:
raise TypeError('Explicit coin is not a matrix.')
# explicit coin
if not scipy.sparse.issparse(coin):
coin = scipy.sparse.csr_array(coin)
self._coin = coin
return
except AttributeError:
pass
coin_list, undefined_coin = self._coin_to_list(coin)
if undefined_coin:
raise ValueError('Coin was not specified for all vertices.')
self._coin = coin_list
[docs]
def set_coin(self, coin='default'):
"""
Set the coin operator based on the graph's structure.
Builds a coin operator considering the degree of each vertex.
The same coin can be applied to all vertices, or multiple
coins can be assigned, each to a specific subset of vertices.
After setting the coin operator,
the evolution operator is updated accordingly.
Parameters
----------
coin
Coin to be used.
Several types of arguments are acceptable.
* str : coin type
Type of the coin to be used.
The following are valid entries.
* 'default', 'd' : default coin,
* 'fourier', 'F' : Fourier coin,
* 'grover', 'G' : Grover coin,
* 'hadamard', 'H' : Hadamard coin,
* 'identity', 'I' : Identity,
* 'minus_fourier', '-F' : Fourier coin with negative phase,
* 'minus_grover', '-G' : Grover coin with negative phase,
* 'minus_hadamard', '-H' : Hadamard coin with negative phase,
* 'minus_identity', '-I' : Identity with negative phase.
* list of str
List of the coin types to be used.
Expects list with 'number of vertices' entries.
* dict
A dictionary with structure
``{coin_type : list_of_vertices}``.
That is, with any valid coin type as key and
the list of vertices to be applied as values.
If ``list_of_vertices = []``,
the respective ``coin_type`` is applied to all vertices
that were not explicitly listed.
* :class:`scipy.sparse.csr_array`
The explicit coin operator.
See Also
--------
set_evolution
Notes
-----
The output of this method is a block-diagonal
operator, which results from the specific ordering of arcs
in the computational basis
(refer to the Notes in :class:`Coined` for more details).
Each block is associated with a :math:`\deg(v)`-dimensional ``coin``.
As a result, there are :math:`|V|` blocks in total.
Note that a loop at a vertex :math:`u` is treated
as the arc :math:`(u,u)`, contributing an additional
one to the degree of :math:`u`.
"""
self.set_evolution(shift=self._shift,
coin=coin,
marked=self._marked)
[docs]
def default_coin(self):
r"""
Returns the default coin name.
The default coin name depends on the graph on
which the quantum walk occurs.
In general, the default coin is ``'grover'``.
For the :class:`hiperwalk.Line` and :class:`hiperwalk.Cycle`,
the default coin is ``'hadamard'``.
Returns
-------
str
Notes
-----
Although the default coin depends on the graph,
the coin is not an attribute of the graph.
That is, it is part of graph theory.
In addition, it does not make sense to have a
default coin in continuous-time quantum walks.
Hence, the method is implemented in the Coined class
instead of each graph class.
Following duck typing,
we do not verify if the graph is an instance of the line or cycle.
Instead, we verify if the maximum degree on the graph is at most 2.
"""
degs = list(map(self._graph.degree,
np.arange(self._graph.number_of_vertices())))
if max(degs) <= 2:
return 'hadamard'
return 'grover'
def _coin_to_valid_name(self, coin):
r"""
Convert a string to its respective valid coin name.
"""
s = coin
if s == 'default' or s == 'd':
s = self.default_coin()
if len(s) <= 2:
prefix = 'minus_' if len(coin) == 2 else ''
abbrv = {'F': 'fourier', 'G' : 'grover',
'H': 'hadamard', 'I': 'identity'}
s = prefix + abbrv[s[-1]]
if s not in Coined._coin_funcs.keys():
raise ValueError(
'Invalid coin. Expected any of '
+ str(list(Coined._coin_funcs.keys())) + ', '
+ "but received '" + str(coin) + "'."
)
return s
def _coin_to_list(self, coin):
r"""
Convert str, list of str or dict to valid coin list.
See Also
--------
set_coin
"""
num_vert = self._graph.number_of_vertices()
coin_list = []
undefined_coin = False
if isinstance(coin, str):
coin_list = [self._coin_to_valid_name(coin)] * num_vert
elif isinstance(coin, dict):
coin_list = [''] * num_vert
for key in coin:
coin_name = self._coin_to_valid_name(key)
value = coin[key]
if value != []:
if not hasattr(value, '__iter__'):
raise TypeError("Expected a list of vertices. "
+ "Received " + str(type(value)) + " "
+ "with value " + str(value) + " instead.")
for v in value:
coin_list[self._graph.vertex_number(v)] = coin_name
else:
coin_list = [coin_name if coin_list[i] == ''
else coin_list[i]
for i in range(num_vert)]
undefined_coin = '' in coin_list
else:
#list of coins
if len(coin) != num_vert:
raise ValueError('There were ' + str(len(coin))
+ ' coins specified. Expected '
+ str(num_vert) + 'coins instead.')
coin_list = list(map(self._coin_to_valid_name, coin))
return coin_list, undefined_coin
@staticmethod
def _fourier_coin(dim):
return dft(dim, scale='sqrtn')
@staticmethod
def _grover_coin(dim):
return np.array(2/dim * np.ones((dim, dim)) - np.identity(dim))
@staticmethod
def _hadamard_coin(dim):
return hadamard(dim) / np.sqrt(dim)
@staticmethod
def _identity_coin(dim):
return scipy.sparse.eye(dim)
@staticmethod
def _minus_fourier_coin(dim):
return -Coined._fourier_coin(dim)
@staticmethod
def _minus_grover_coin(dim):
return -Coined._grover_coin(dim)
@staticmethod
def _minus_hadamard_coin(dim):
return -Coined._hadamard_coin(dim)
@staticmethod
def _minus_identity_coin(dim):
return -np.identity(dim)
def _set_marked(self, marked=[]):
try:
marked.get(0) #throws exception if list
except AttributeError:
# list
if len(marked) > 0:
marked = {'-I': marked}
else:
marked = {}
coin_list, _ = self._coin_to_list(marked)
dict_values = marked.values()
vertices = [vlist if hasattr(vlist, '__iter__') else [vlist]
for vlist in dict_values]
vertices = [v for vlist in vertices for v in vlist ]
marked = vertices
super()._set_marked(marked=marked)
self._oracle_coin = coin_list
[docs]
def set_marked(self, marked=[]):
r"""
Set the marked vertices.
When a set or list of vertices is provided, they
are set as marked.
The evolution operator is updated accordingly.
If a dictionary is passed, the coin of those vertices is
replaced solely for the purpose of generating the evolution
operator. This can only be done if the set coin operator is
not an explicit matrix.
Parameters
----------
marked : list of vertices or dict
list of vertices to be marked and
how they are going to be marked.
* list of vertices
Given vertices are set as marked.
The coin for those vertices is '-I'.
* dict
A dictionary with structure
``{coin_type : list_of_vertices}``.
Analogous to the one accepted by :meth:`set_coin`.
See Also
--------
set_coin
set_evolution
"""
self.set_evolution(shift=self._shift,
coin=self._coin,
marked=marked)
def _coin_list_to_explicit_coin(self, coin_list):
num_vert = self._graph.number_of_vertices()
degree = self._graph.degree
blocks = [self._coin_funcs[coin_list[v]](degree(v))
for v in range(num_vert)]
C = scipy.sparse.block_diag(blocks, format='csr')
return scipy.sparse.csr_array(C)
[docs]
def get_coin(self):
r"""
Retrieve the coin used in the creation of the evolution operator.
Returns
-------
:class:`scipy.sparse.csr_array`
See Also
--------
set_coin
"""
if scipy.sparse.issparse(self._coin):
if len(self._marked) == 0:
return self._coin
# if coin was explicitly set,
# and there are different coins for the marked vertices,
# change them.
def get_block(vertex):
g = self._graph
neighbors = g.neighbors(vertex)
# TODO: this technique wont work after the behavior of
# neighbors() change.
a1 = g.arc_number((vertex, neighbors[0]))
a2 = g.arc_number((vertex, neighbors[-1]))
# arc order may change
start = min(a1, a2)
end = max(a1, a2) + 1
return scipy.sparse.csr_array(self._coin[start:end,
start:end])
num_vert = self._graph.number_of_vertices()
degree = self._graph.degree
oracle_coin = self._oracle_coin
coin_funcs = Coined._coin_funcs
blocks = [coin_funcs[oracle_coin[v]](degree(v))
if oracle_coin[v] != ''
else get_block(v)
for v in range(num_vert)]
C = scipy.sparse.block_diag(blocks, format='csr')
return scipy.sparse.csr_array(C)
oracle_coin = self._oracle_coin
if len(oracle_coin) > 0:
coin = self._coin
coin_list = [oracle_coin[i] if oracle_coin[i] != ''
else coin[i]
for i in range(len(coin))]
else:
coin_list = self._coin
return self._coin_list_to_explicit_coin(coin_list)
def _set_evolution(self):
# TODO: Check if matrix is sparse in pynelibna interface
# TODO: Check if matrices are deleted from memory and GPU.
U = None
S = self.get_shift()
C = self.get_coin()
if nbl.get_hpc() is not None:
from warnings import warn
warn('HPC sparse matrix multiplication is not implemented. '
+ 'Using standard scipy multiplication instead.')
# # TODO: implement sparse matrix multiplication with hpc
# S = S.todense()
# C = C.todense()
# nbl_S = nbl.send_matrix(S)
# del S
# nbl_C = nbl.send_matrix(C)
# del C
# nbl_C = nbl.multiply_matrices(nbl_S, nbl_C)
# del nbl_S
# U = nbl.retrieve_matrix(nbl_C)
# del nbl_C
# U = scipy.sparse.csr_array(U)
U = S @ C
self._evolution = U
return U
[docs]
def set_evolution(self, **kwargs):
"""
Set the evolution operator.
Establishes the shift operator, coin operator,
and the marked vertices.
They are set using the appropriate ``**kwargs``.
If ``**kwargs`` is empty, the default arguments are used.
Subsequently, the evolution operator is constructed by
multiplying the shift and coin operators.
If the coin operator is given as an explicit matrix,
its definition remains unaltered
even in the presence of marked vertices. However, if the coin
operator is defined using coin names, any marked vertices will
prompt an update to the coin operator.
Specifically, the coin names
for each marked vertex will default to a replacement with -I,
unless an alternative substitution is provided.
Parameters
----------
**kwargs : dict, optional
Arguments for setting the evolution operator.
Accepts any valid keywords from
:meth:`set_shift` :meth:`set_coin`, and :meth:`set_marked`.
See Also
--------
set_shift
set_coin
set_marked
get_evolution
Notes
-----
The evolution operator is given by
.. math::
U = SC
where :math:`S` is the shift operator, and
:math:`C` is the coin operator. If there are
any marked vertices, the coin operator is
modified accordingly [1]_.
When the coin operator is set as an explicit matrix, it remains
unaltered by marked vertices. However, if it's not provided in
matrix form (e.g., as a list of coins), the coin for each marked
vertex will be substituted based on the most recent
:meth:`set_marked` invocation.
.. warning::
Sparse matrix multipliation is not supported yet.
Converting all matrices to dense.
Then converting back to sparse.
This uses unnecessary memory and computational time.
References
----------
.. [1] R. Portugal. "Quantum walks and search algorithms",
2nd edition, Springer, 2018.
"""
S_kwargs = Coined._filter_valid_kwargs(
kwargs,
Coined._valid_kwargs['shift'])
C_kwargs = Coined._filter_valid_kwargs(
kwargs,
Coined._valid_kwargs['coin'])
R_kwargs = Coined._filter_valid_kwargs(
kwargs,
Coined._valid_kwargs['marked'])
self._set_shift(**S_kwargs)
self._set_coin(**C_kwargs)
self._set_marked(**R_kwargs)
self._set_evolution()
[docs]
def probability_distribution(self, states):
r"""
Compute the probability distribution of given state(s).
The probability of the walker being found on each vertex
for the given state(s).
Parameters
----------
states : :class:`numpy.ndarray`
The state(s) used to compute the probabilities.
It may be a single state or a list of states.
Returns
-------
probabilities : :class:`numpy.ndarray`
If ``states`` is a single state,
``probabilities[v]`` is the probability of the
walker being found on vertex ``v``.
If ``states`` is a list of states,
``probabilities[i][v]`` is the probability of the
walker beign found at vertex ``v`` in ``states[i]``.
See Also
--------
probability
simulate
Notes
-----
The probability for a given vertex :math:`u` is calculated as the sum of the
absolute squares of the amplitudes of the arcs originating from :math:`u`.
More precisely, if the state of the walker is
.. math::
\sum_{(v, w) \in \mathcal{A}(\vec G)} \alpha_{v,w} \ket{v,w},
where :math:`\mathcal{A}(\vec G)` is the set of arcs of
the symmetric directed graph formed by
replacing each edge in :math:`G` with two arcs, one for each direction,
then the probability associated with vertex :math:`u` is given by
.. math::
\sum_{v \in N(u)}|\alpha_{u, v}|^2,
with :math:`N(u)` being the set of out neighbors of :math:`u`.
A loop at :math:`u` is the arc :math:`(u,u)`.
The probability distribution, which is returned by this
method as a ``numpy.ndarray``, is the collection of these
probabilities for all vertices.
"""
try:
states.shape == 1
except:
states = np.array(states, copy=False)
if len(states.shape) == 1:
states = np.array([states], copy=False)
graph = self._graph
num_vert = graph.number_of_vertices()
prob = np.array([[Coined._elementwise_probability(
states[i, graph.arcs_with_tail(v)]).sum()
for v in range(num_vert)]
for i in range(len(states))])
return prob
[docs]
def state(self, entries):
"""
Generates a valid state.
The state corresponds to the walker being in a superposition
of the ``entries``.
The final state is normalized in order to be a unit vector.
Parameters
----------
entries : list of entry
Each entry is a tuple (or array).
An entry can be specified in two different ways:
``(amplitude, (tail, head))``, and
``(amplitude, arc_number)``.
amplitude
The amplitude of the given entry.
tail
The vertex corresponding to the position of the walker
in the superposition.
In other words, the tail of the arc.
The tuple ``(tail, head)`` must be a valid arc.
head
The vertex to which the coin is pointing.
The tuple ``(tail, head)`` must be a valid arc.
arc_number
The numerical arc label with respect to the arc ordering
given by the computational basis.
Notes
-----
If there are repeated arcs,
the amplitude of the last entry is used.
Examples
--------
The following commands generate the same state on a
``(dim, dim)``-dimensional grid.
.. testsetup::
from sys import path
path.append('../..')
import hiperwalk as hpw
import numpy as np
dim = 10
g = hpw.Grid((dim, dim))
qw = hpw.Coined(graph=g)
>>> psi = qw.state([(1, (0, 1)), [1, 1], (1, 2)])
>>> psi1 = qw.state([(1, ([0, 0], [0, 1])),
... [1, [(0, 0), (dim - 1, 0)]],
... (1, (0, 1))])
>>> psi2 = qw.state([(1, [[0, 0], [0, 1]]),
... [1, ((0, 0), (dim - 1, 0))],
... (1, [0, 1])])
>>> np.all(psi == psi1)
True
>>> np.all(psi1 == psi2)
True
"""
if len(entries) == 0:
raise TypeError("Entries were not specified.")
dtype = np.array([entry[0] for entry in entries]).dtype
dtype = (complex if np.issubdtype(dtype, np.complexfloating)
else float)
state = np.zeros(self.hilb_dim, dtype=dtype)
for ampl, arc in entries:
state[self._graph.arc_number(arc)] = ampl
return self._normalize(state)
[docs]
def ket(self, arc):
r"""
Create a computational basis state.
Parameters
----------
arc: int or tuple of int
The ket label.
There are two different labels acceptable.
(tail, head)
The arc notation.
arc_number
The label of the arc.
The number according to the computational basis order.
"""
ket = np.zeros(self.hilb_dim, dtype=float)
ket[self._graph.arc_number(arc)] = 1
return ket
[docs]
def probability(self, states, vertices):
r"""
Computes the sum of probabilities for the specified vertices.
Computes the probability of the walker being located on a
vertex within the set of provided vertices, given that the walk
is on specified states.
Parameters
----------
states : :class:`numpy.ndarray`
The state(s) used to compute the probability.
``states`` can be a single state or a list of states.
vertices: list of int
The subset of vertices.
Returns
-------
probabilities : float or :class:`numpy.ndarray`
float:
If ``states`` is a single state.
:class:`numpy.ndarray`:
If ``states`` is a list of states,
``probabilities[i]`` is the probability
corresponding to the ``i``-th state.
See Also
--------
simulate
Notes
-----
The probability of finding the walker on vertex
:math:`v`, given the state of the walk
:math:`|\psi \rangle`, is calculated as
.. math::
\sum_{\substack{a\in{\mathcal{A}}\\ \operatorname{tail}(a)=v}} \,
\left|{\langle a} | {\psi \rangle}\right|^2,
where :math:`\mathcal{A}` denotes the set of arcs.
"""
return super().probability(states, vertices)